A convenient fluorescent-labeled assay for in vitro measurement of DNA mismatch repair activity.
نویسندگان
چکیده
OBJECTIVE The assay of DNA mismatch repair (MMR) activity can be used as a biomarker for environmental condition detection and human disease diagnosis. Radioactive ³²P-endlabeled DNA containing mismatch is extensively used as the substrate for MMR activity analyses. The aim of the present study is to develop a simple non-radioactive, but equally specific and sensitive method for the MMR activity assay. METHODS A fluorescent label was chosen to replace the radioactive isotope label. Sensitive evaluation of the fluorescent label was carried out for the first time, and then the fluorescent label was compared with the isotope label in the MMR activity and DNA binding assays. RESULT LOD (limit of detection) of the fluorescent label was about 0.1 fmol and the relative signal strength displayed a pretty good linear relationship. Moreover, the fluorescent label method has equivalent sensitivity and performance as compared with the classical radioactive method in experiments. CONCLUSION In light of the sensitivity, reproducibility, safety, rapidity and long lifespan of the fluorescent label, this improved method can be applied to evaluation of biologic and toxic effects of environmental pollutants on man and other forms of life.
منابع مشابه
Preparation of heteroduplex enhanced green fluorescent protein plasmid for in vivo mismatch repair activity assay.
Preparation of heteroduplexes in large quantities with high purity is essential for the measurement of DNA mismatch repair (MMR) activity. Here we report a rapid, less labor-intensive method for the preparation of a heteroduplex plasmid that expresses the enhanced green fluorescent protein (EGFP) if the mismatch is repaired correctly. The method involves the use of a wild-type and a mutated EGF...
متن کاملDifferent aspects of cytochalasin B Blocked micronucleus cytome (CBMN cyt) assay as a comprehensive measurement tool for radiobiological studies, biological dosimetry and genome instability
It is now universally accepted that DNA is the main target for damages caused by physical and chemical genotoxicants. Although there are different methods to measure directly the induced DNA damages but due to fast repair processes in cellular environment, most of the damages would be repaired even before sampling, therefore processed DNA damages, i.e. damages left unrepaired after acting repai...
متن کاملMolecular Analysis of Microsatellite Instability in Hereditary Non Polyposis Colon Carcinoma Patients from North-East Iran
Background and Objectives: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer predisposition syndrome caused by germ-line mutations in DNA mismatch repair genes. Tumors arising as a result of these mutations display instability in a sequence area known as microsatellites. Studies have shown that some Bethesda markers (BAT25, BAT26) are more efficient than other...
متن کاملResidual DNA double strand breaks correlates with excess acute toxicity from radiotherapy
Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...
متن کاملStudies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical and environmental sciences : BES
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2010